Posted in | News | Gas Sensor

Researchers Develop Nanostructured Gas Sensor Devices for Detecting VOC in Breath

Research leading detection of low concentrations of gas present in exhaled human breath to health checkups and early detection and treatment of serious diseases is being performed. As gas sensors using nanomaterials can detect various gases even at low concentrations, installing such sensors in electronic healthcare devices is sought after, and research and development are being actively conducted.

a. Photo figure of the gas sensor device b. Cross-sectional FE-SEM image of the MoO3 nanorod arrays. (Credit: Osaka University)

Semiconductor gas sensors detect gas through reduced electrical resistance due to gas molecules attached to the surface of crystalline semiconductor materials. For this, gas sensors need a specific surface area of nanomaterials. In order to use nanomaterials for conventional gas sensors, a complicated flow was necessary, from nanomaterials synthesis to cleansing, uniform dispersion of solvent, applying on substrates, and sintering. Thus, there is a concern that manufacturing technology of such gas sensors requires significant time and labor, increasing cost.

A group of researchers led by Assistant Professor SUGAHARA Tohru at The Institute of Scientific and Industrial Research, Osaka University, succeeded in producing nanostructured gas sensor devices for detecting volatile organic compounds (VOC) in breath for the purpose of healthcare in time equivalent to or shorter than one tenth of the time required for manufacturing conventional gas sensors. This group improved conventional complicated production methods, developing a simple production method of just sintering substrates applied with materials. This gas sensor’s sensing response was comparable to the top-of-the-line sensors reported all over the world.

Since demand in healthcare products is on the rise, there is a lot of activity in research and development of sensors for checking health and disease by examining the gas components of a person’s breath. Breathalyzers for finding out who is driving drunk have already been commercialized. Recently, breath sensors for early detection of life-style diseases such as cancer and diabetes have been developed, but most of them are large, bulky and expensive. If gas sensors with high sensitivity are produced thanks to this group’s research results, portable breath sensors enabling early detection of diseases will gain popularity.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.