Posted in | News | Sensors General

3D-Printed Whisker Sensor can Effectively Detect Underwater Vortexes

A new study has shown that a fully 3D-printed whisker sensor made of polyurethane, graphene, and copper tape can detect underwater vortexes with very high sensitivity. The simple design, mechanical reliability, and low-cost fabrication method contribute to the important commercial implications of this versatile new sensor, as described in an article in Soft Robotics, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Soft Robotics website until February 15, 2018.

Credit: Mary Ann Liebert, Inc., publishers

Coauthors Jahan Zeb Gul, Kim Young Su, and Kyung Hyun Choi, Jeju National University, South Korea, provide a detailed description of the sensor, which mimics the vortex-detecting capability of the whiskers of a pinniped -- a semiaquatic carnivore -- as it tracks its prey in the water. The researchers report on the 3D fabrication method used to produce the whisker sensor and how the analog signals that indicate resistance changes are digitized and fed to a microcontroller for vertex detection.

The article is entitled "Fully 3D Printed Multi-Material Soft Bio-Inspired Whisker Sensor for Underwater Induced Vortex Detection."

"This paper is a wonderful example of bioinspired soft robotics. The authors have used observations of a natural system to build a materials-based sensor that can be used on underwater robots for better positional control, navigation, and object detection,” says Editor-in-Chief Barry A. Trimmer, PhD, who directs the Neuromechanics and Biomimetic Devices Laboratory at Tufts University (Medford, MA).

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.